Homework 3

Type up answers in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ and turn in by November 4. Write pseudocode in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ and embed (e.g., R, Python, Julia) code within the same document.

1. Normal-normal-normal. Consider the setup

$$
\begin{aligned}
& \mathbf{y}=y_{1}, \ldots, y_{100} \stackrel{i i d}{\sim} \\
& \mu \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
& \sim \sim \operatorname{Normal}\left(\mu_{0}=0, \sigma_{0}^{2}=100\right) \\
& \sigma^{2} \sim \operatorname{InverseGamma}(\alpha=2, \beta=10),
\end{aligned}
$$

where the second and third lines denote prior specifications, and μ and σ^{2} are assumed to be independent a priori.
After simulating y_{1}, \ldots, y_{100} with $\mu=50$ and $\sigma^{2}=10$ fixed, approximate the joint posterior distribution $p\left(\mu, \sigma^{2} \mid y_{1}, \ldots, y_{100}\right)$ using
(a) a 2D Gaussian approximation centered at the posterior mode (e.g., MAP estimators, $\hat{\mu}$ and $\hat{\sigma}^{2}$) and with covariance given by

$$
-\left.\left(\begin{array}{cc}
\frac{\partial^{2}}{\partial \mu^{2}} \log p\left(\mu, \sigma^{2} \mid \mathbf{y}\right) & \frac{\partial^{2}}{\partial \mu \partial \sigma^{2}} \log p\left(\mu, \sigma^{2} \mid \mathbf{y}\right) \\
\frac{\partial^{2}}{\partial \mu \partial \sigma^{2}} \log p\left(\mu, \sigma^{2} \mid \mathbf{y}\right) & \frac{\partial^{2}}{\partial\left(\sigma^{2}\right)^{2}} \log p\left(\mu, \sigma^{2} \mid \mathbf{y}\right)
\end{array}\right)^{-1}\right|_{\left(\mu, \sigma^{2}\right)=\left(\hat{\mu}, \hat{\sigma}^{2}\right)},
$$

(b) mean field variational inference with variational distribution

$$
q\left(\mu, \sigma^{2} \mid m, v^{2}, b\right)=\operatorname{Normal}\left(\mu \mid m, v^{2}\right) \times \operatorname{InverseGamma}\left(\sigma^{2} \mid 1, b\right),
$$

Create 2D contour plots for each of the 2 approximate posteriors.
2. 2D Clutter problem. Setting $w=0.5$ and $N=200$ implement the clutter problem (as described in class notes). Simulate the data generating mixture distribution with 'true' $\boldsymbol{\theta}$ fixed to (5,5). Approximate the posterior of the mean parameter $\boldsymbol{\theta}$ using
(a) assumed density filtering
(b) and expectation propagation.

Create 2D contour plots for each of the 2 approximate posteriors.

Hint: simulating from the data generating mixture distribution will require simulating $w_{1}, \ldots, w_{200} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(1 / 2)$.

