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Homework 4

Type up answers in LATEX and complete according to your personal sched-
ule. Write pseudocode in LATEX and embed (e.g., R, Python, Julia) code
within the same document.

1. Normal-normal Consider the setup

y = y1, . . . , y100
iid∼ Normal(µ, σ2)

µ ∼ Normal(µ0 = 0, σ2
0 = 100)

σ2 ∼ InverseGamma(α = 2, β = 10) ,

where the second and third lines denote prior specifications, and µ and
σ2 are assumed to be independent a priori.

After simulating y1, . . . , y100 with µ = 50 and σ2 = 10 fixed, sample the
joint posterior distribution p(µ, σ2|y1, . . . , y100) using

(a) Metropolis-Hastings with a bivariate Gaussian proposal distribu-
tion truncated along the dimension corresponding to σ2; and

(b) Hamiltonian Monte Carlo over the transformed parameter vector
(µ, log σ2) using 100 leapfrog iterations at each step. Note that
this will require a change of variables that must be taken into
account in both the posterior distribution and its gradient.

Tune both samplers (i.e., M-H proposal variance and HMC leapfrog
stepsize) to average a 50% acceptance rate. Run both samplers to
obtain a minimum effective sample size (ESS) of 10,000 for either pa-
rameter. What is the average ESS per sample for each sampler? Create
2D contour plots for each of the 2 posteriors.

2. Hierarchically modeling house prices

(a) Start by simulating home prices in 5 fictional states. Set the true
global mean to be µ0 = 13.37 and sample j = 1, . . . , 5 state house
true price means according to the distribution µj ∼ N(µ0, 4

2).
Let each state share the same true σj =

√
5.35. Next, sample

nj = 100 house prices from each state according to the distribution

y1j, . . . , ynjj
iid∼ N(µj, σ

2
j ).
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(b) Next, define the hierarchical model

yij
ind∼ N(µj, σ

2)

µj
ind∼ N(µ0, 25

2)

µ0 ∼ N(0, 502)

σ2 ∼ Inv-χ2(1, 0.5)

and build a Gibbs sampler that uses conditional conjugacy to gen-
erate closed-form updates for

i. each µj given µ0, σ
2 and all yij;

ii. µ0 given all µj; and

iii. σ2 given all µj and all yij.

(c) Simulate the Gibbs sampler for 10,000 iterations. Obtain 95%
credible intervals for each model parameter by taking the 2.5th
and 97.5th percentiles. Plot the 7 credible intervals along with
the true values.

3. Rat tumors An experiment features J = 71 groups of rats, each of
which receive different dosages of a certain treatment. Each group
features a different number of rats nj. Denote the number of rats in
each group that develop a tumor yj ≤ nj. The data are available here:
https://ucla-biostats-202c.github.io/code/ratTumor.txt.

(a) Define the hierarchical model

yj
ind∼ Binomial(nj, θj)

θj
iid∼ Beta(2, β)

β ∼ Gamma(2, 1)

and build a Gibbs sampler that uses

i. conditional conjugacy to generate closed-form updates for each
θj given nj, yj and β; and

ii. Metropolis-Hastings to update β conditioned on all 71 θjs.
Note that you should tune the β update step to obtain a
roughly 50% acceptance rate. We sometimes refer to this
scheme as “Metropolis-within-Gibbs”.

(b) Simulate your Gibbs sampler for 100,000 iterations and

i. report the mean ESS for the θs as well as the ESS for β;

ii. create a figure containing

https://ucla-biostats-202c.github.io/code/ratTumor.txt
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A. a 95% credible interval for each θjs;

B. the posterior mean for each θj;

C. the maximum likelihood estimate of each θj,

i.e., θ̂j = yj/nj.

(c) Based on the relationship between the posterior means and the
maximum likelihood estimates, guess the meaning of the phrase
“Bayesian shrinkage”.

4. Snoring and heart disease The following is one example of gener-
alized linear regression within the Bayesian paradigm. We model the
association between snoring and heart disease using the data in Table 1.
For each individual i, we model the binary outcome yi ∈ {0, 1}, where
yi = 0 denotes no heart disease and yi = 1 denotes heart disease. Define
our vector of covariates xi = (1, xi)

T , with first element corresponding
to the intercept and xi corresponding to the snoring level of the ith in-
dividual. Letting ηi = xT

i β for β = (β0, β1)
T the corresponding vector

of regression coefficients, we have the logistic-regression likelihood

Pr(y|β) ∝
∏
i

(
eηi

1 + eηi

)yi ( 1

1 + eηi

)1−yi

,

and the log-likelihood

log Pr(y|β) ∝
∑
i

yiηi − log (1 + eηi)

=
∑

j∈{0,2,4,5}

yjηj − nj log (1 + ηj) ,

where yj are the group heart disease totals and nj are the group sizes.
If we place independent normal priors on the coefficients

β0, β1
iid∼ N(0, 102) ,

then their joint log-posterior is

log p(β|y) ∝ − 1

200
βTβ +

∑
j∈{0,2,4,5}

yjηj − nj log (1 + ηj) .

(a) Use the Metropolis algorithm (tuned to a 50% acceptance rate)
with bivariate Gaussian proposals to infer the joint posterior dis-
tribution of β0 and β1. How many MCMC iterations are required
to achieve a minimum ESS of 1,000?
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Number of people with Total number
Snoring level (xj) heart disease (yj) surveyed (nj)

0 24 1355
2 35 603
4 21 192
5 30 224

Table 1: Data from 2484 subjects (reported by spouses). Snoring level j = 5
is the most severe, and j = 0 means no snoring.

(b) What are the posterior means and 95% credible intervals for β0

and β1? How do we interpret them?

(c) Are the results statistically significant? Why or why not?


