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1 Normal approximations to posterior

Again, we have y = y1, . . . , yN
iid∼ p(y|θ). By independence, the likelihood takes the form

p(y|θ) =
N∏
n=1

p(yn|θ) .

Defining the MLE

θ̂N = argmax
θ
p(y|θ) ,

it can be shown that (under regularity conditions)

√
N(θ̂N − θ0)

D−→ N(0, I−1(θ0)) ,

where θ0 is the true parameter value and I(θ0) is the Fisher information

I(θ0) = −Ey|θ

(
∂2

∂θ2
log p(y|θ0)

)
.

Convergence in distribution leads to the approximation

θ̂N
·∼ N

(
θ,

1

N
I−1(θ0)

)
.

Convergence in distribution also implies θ̂N
P→ θ0, so we can use Slutsky’s theorem to write the more

useful result

θ̂N
·∼ N

(
θ,

1

N
I−1(θ̂N )

)
.

In machine learning, it is common practice to use optimization to obtain the posterior mode or MAP
(maximum a posteriori) estimator

θ̄ = argmax
θ
p(θ|y)

use the MAP estimator in the context of the normal approximation1

θ|y ·∼ N(θ̄, V̄ ) ,

where

V̄ =

(
− ∂2

∂θ2
log p(θ|y)

∣∣∣∣
θ=θ̄

)−1

.

1Note that, assuming regularity conditions, the Bernstein-von Mises theorem (see previous lecture) says that a similar
normal approximation about the MLE will also prove accurate.
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We can write the second derivative as

∂2

∂θ2
log p(θ|y) = ∂2

∂θ2
log p(y|θ) + ∂2

∂θ2
log p(θ)− ∂2

∂θ2
log p(y) =

∂2

∂θ2
log p(y|θ) + ∂2

∂θ2
log p(θ) .

It is then reasonable to quantify the influence of the prior using the fraction of information in the prior
(FIP)

FIP =
∂2

∂θ2 log p(θ)
∂2

∂θ2 log p(θ|y)

∣∣∣∣
θ=θ̄

,

or, when θ is a vector:

FIP = tr

[(
∂2

∂θ∂θT
log p(θ)

)(
∂2

∂θ∂θT
log p(θ|y)

)−1
] ∣∣∣∣∣

θ=θ̄

.

2 Variational inference (VI)

Recall that the KL divergence between two probability distributions is defined

DKL(p||q) =
∫
p(θ) log

(
p(θ)

q(θ)

)
dθ .

Gibbs’ inequality says

DKL(p||q) ≥ 0 ,

and DKL(p||q) = 0 if and only if p = q. To see this, note that log(x) ≤ x− 1 for all x > 0, and so

DKL(p||q) = −
∫
p(θ) log

(
q(θ)

p(θ)

)
dθ ≥ −

∫
p(θ)

(
q(θ)

p(θ)
− 1

)
dθ

= −
∫
q(θ)dθ +

∫
p(θ)dθ ≥ 0 .

In VI, we approximate the posterior distribution p(θ|y) with a distribution q(θ|ψ), where ψ are ‘vari-
ational parameters’ we optimize thus:

ψ̂ = argmin
ψ
DKL(q(θ|ψ)||p(θ|y)) = argmin

ψ

∫
q(θ|ψ) log

(
q(θ|ψ)
p(θ|y)

)
dθ

= argmin
ψ

∫
q(θ|ψ) log

(
q(θ|ψ)p(y)
p(θ,y)

)
dθ

= argmin
ψ

∫
q(θ|ψ) (log q(θ|ψ)− log p(θ,y)) dθ +

∫
q(θ|ψ) log p(y)dθ

= argmin
ψ

∫
q(θ|ψ) (log q(θ|ψ)− log p(θ,y)) dθ + log p(y)

= argmin
ψ

−L(ψ,y) + log p(y)

= argmax
ψ

L(ψ,y) ,

where we define

L(ψ,y) := −
∫
q(θ|ψ) (log q(θ|ψ)− log p(θ,y)) dθ .

Rearranging terms, we note that

log p(y) = DKL(q(θ|ψ)||p(θ|y)) + L(ψ,y) ,

and therefore

log p(y) ≥ L(ψ,y) .

For this reason, L is sometimes referred to as the ELBO (Evidence Lower BOund).2

2Example on Prof. Shahbaba’s notes.
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3 Another approach

Alternatively, we may obtain an approximating distribution q(θ|ψ) by minimizing the (different!)
objective function:

ψ̂ = argmin
ψ
DKL(p(θ|y)||q(θ|ψ)) . (1)

Let us assume that the approximating distribution is an exponential family distribution, i.e.,

q(θ|ψ) = h(θ) exp

(∑
α

ψαϕα(θ)− Φ(ψ)

)
.

Here, ψα are the elements of the natural parameter, ϕα are the elements of the sufficient statistic, and
Φ is the log-partition function that enforces integration constraints. The solution to (1) is given by

moment matching, i.e., ψ̂ satisfies∫
q(θ|ψ̂)ϕα(θ)dθ =

∫
p(θ|y)ϕα(θ)dθ .

To see this, we use the fact that the log-partition function of an exponential family distribution satisfies

∂

∂ψα
Φ(ψα) = Eθ|ψ (ϕα) .

This itself may be seen by noting that

1 =

∫
q(θ|ψ)dθ = e−Φ(ψ)

∫
h(θ) exp

(∑
α

ψαϕα(θ)

)
dθ

and differentiating both sides:

0 =
∂

∂ψα
e−Φ(ψ)

∫
h(θ) exp

(∑
α

ψαϕα(θ)

)
dθ + e−Φ(ψ)

∫
h(θ)

∂

∂ψα
exp

(∑
α

ψαϕα(θ)

)
dθ

= − ∂

∂ψα
Φ(ψ) + Eθ|ψ (ϕα) .

We therefore have

∂

∂ψα
DKL(p(θ|y)||q(θ|ψ)) =

∂

∂ψα

∫
p(θ|y) (log p(θ|y)− log q(θ|ψ)) dθ

= −
∫
p(θ|y) ∂

∂ψα
log q(θ|ψ)dθ

= −
∫
p(θ|y) ∂

∂ψα

(∑
α

ψαϕα(θ)− Φ(ψ)

)
dθ

= −
∫
p(θ|y)

(
ϕα(θ)−

∂

∂ψα
Φ(ψ)

)
dθ

= −
∫
p(θ|y)

(
ϕα(θ)− Eθ|ψ(ϕα

)
)dθ

= −
∫
p(θ|y)ϕα(θ)dθ − Eθ|ψ(ϕα) .

Setting this derivative to 0 leads to the moment matching solution to (1):∫
q(θ|ψ̂)ϕα(θ)dθ =

∫
p(θ|y)ϕα(θ)dθ .
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3.1 Assumed density filtering

Note that the posterior distribution may be written as the product of N ‘compatibility functions’

p(θ|y) ∝ p(θ)

N∏
n=1

p(yn|θ) =
N∏
n=0

pn(θ) .

where p0(θ) := p(θ) and pn(θ) := p(yn|θ). Assumed density filtering (ADF) constructs an approxima-
tion of p(θ|y) by first finding

ψ0 = argmin
ψ
DKL(p0(θ)||q(θ|ψ))

and then, in order, iteratively updating the approximation by finding

ψn = argmin
ψ
DKL(pn(θ)q(θ|ψn−1)||q(θ|ψ)) .

When the prior p(θ) is a member of the exponential family q(θ|ψ), the initial update ψ0 is given by
the prior parameters. Subsequent ψn are obtained using moment matching.

ADF thus uses the current approximation to help guide the construction of the next approximation
and generally performs better than taking the product of N independent approximations. On the other
hand, the method is sensitive to the ordering and can be thrown off by bad starting approximations.

3.2 Expectation propagation

Expectation propagation (EP) iteratively improves an approximation to the posterior q(θ|ψ) ∝
∏
n rn(θ).

The algorithm begins by setting each rn = 1 and performs the following steps until convergence:

1. Randomly select n ∼ Unif{0, 1, . . . , N};

2. Remove rn from current posterior by dividing and normalizing

q(θ|ψ−n) ∝ q(θ|ψ)
rn(θ)

.

Note that this ‘cavity distribution’ is in the same exponential family distribution if rn is in it or
is constant (although it might not be normalizable).

3. Update exponential family approximation to posterior q(θ|ψ∗) by finding

ψ∗ = argmin
ψ
DKL(pn(θ)q(θ|ψ−n)||q(θ|ψ)) .

Again, this step performed by moment matching.

4. Update exponential family approximation of rn as

rn(θ) ∝
q(θ|ψ∗)

q(θ|ψ−n)
.

Note that this step enforces rn’s membership within the (not necessarily normalizable) exponen-
tial family.

EP often outperforms ADU, but there is no guarantee of convergence. Fixed points exist for ap-
proximation distributions belonging to exponential family. Lack of normalization guarantees means
possibility of, e.g., negative variances for normal approximations.

3.3 The clutter problem

Suppose we have Gaussian observations Y = y1, . . . ,yN in a ‘sea of unrelated clutter’, which we model
using the mixture distribution

p(y|θ) = (1− w)N(y|θ, ID) + wN(y|0, 10ID) .

We also specify the prior p(θ) ∼ N(0, 100ID). Let p0(θ) = p(θ), and pn(θ) := p(yn|θ) for n > 0.
Finally, we specify the Gaussian approximation distribution q(θ) = N(mθ, vθID).
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3.3.1 Assumed density filtering

At iteration 0, we minimize the KL divergence between p0 and q, subject to the restriction that q be
Gaussian with mean mθ and covariance vθID. Thus, iteration 0 sets q to be equal to the prior p = p0.
At each subsequent nth step, we obtain the ‘exact posterior’

p̂(θ) =
pn(θ)q

−n(θ)∫
pn(θ)q−n(θ)dθ

and minimize DKL(p̂||q) subject to the spherical Gaussian specification of q. Due to the fact that the
Gaussian distribution belongs to the exponential family, this solution is obtained by moment matching:

Eq(θ) = Ep̂(θ) ,

Eq(θ
Tθ) = Ep̂(θ

Tθ) .

Each step also produces the normalization factor

zn =

∫
pn(θ)q

−n(θ)dθ ,

and we use the product of these factors to estimate p(Y). Here, we have

zn = (1− w)N(yn|m−n
θ , (v−nθ + 1)ID) + wN(yn|0, 10ID) .

For the clutter problem, the ADF algorithm follows these steps:

1. Initialize mθ = 0, v−nθ = 100, s = 1;

2. For n = 1, . . . , N , update (mθ, vθ, s) according to

(a) s = s−nzn;

(b) πn = 1− w
zn
N(yn|0, 10ID);

(c) mθ = m−n
θ + v−nθ πn

yn−m−n
θ

v−n
θ +1

;

(d) vθ = v−nθ − πn
(v−n

θ )2

v−n
θ +1

+ πn(1− πn)
(v−n

θ )2∥yn−m−n
θ ∥2

D(v−n
θ +1)2

.

3.3.2 Expectation propagation

For the same problem, the EP term approximations take the form

rn(θ) = sn exp

(
− 1

2vn
(θ −mn)

T (θ −mn)

)
,

where q(θ) ∝
∏
n rn(θ). The EP algorithm proceeds as follows.

1. Initialize the prior terms v0 = 100, m0 = 0, s0 = (2πv0)
−D/2 and the data terms so that

rn(θ) ∝ 1: vn = ∞, mn = 0 and sn = 1;

2. mθ = m0, vθ = v0;

3. Until all (mn, vn, sn) converge, loop n = 1, . . . , N :

(a) Remove rn from the posterior to get ‘old’ posterior:

(v−nθ )−1 = v−1
θ − v−1

n

m−n
θ = mθ +

v−nθ
vn

(mθ −mn) ;

(b) Recompute (mθ, vθ, zn) from (m−n
θ , v−nθ ) as in ADF:

i. zn = (1− w)N(yn|m−n
θ , (v−nθ + 1)ID) + wN(yn|0, 10ID);
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ii. πn = 1− w
zn
N(yn|0, 10ID);

iii. mθ = m−n
θ + v−nθ πn

yn−m−n
θ

v−n
θ +1

;

iv. vθ = v−nθ − πn
(v−n

θ )2

v−n
θ +1

+ πn(1− πn)
(v−n

θ )2∥yn−m−n
θ ∥2

D(v−n
θ +1)2

;

(c) Update rn:

v−1
n = v−1

θ − (v−nθ )−1

mn = m−n
θ +

(vn + v−nθ )

v−nθ
(mθ −m−n

θ )

sn =
zn

(2πvn)D/2N(mn|m−n
θ , (vn + v−nθ )I)

;

4. Compute normalizing constant (if you want it):

V =
mT
θmθ

vθ
−
∑
n

mT
nmn

vn

p(Y) ≈ (2πvθ)
D/2eV/2

N∏
n=0

sn .

4 Score matching

Here, we take a break from Bayesian inference but continue to use information theoretic tools. Suppose
our data y ∈ RD follow a true distribution with pdf py(·) and that we model these data using the

distribution p(·|θ) for θ ∈ RP . That is, we wish to approximate py(·) with p(·|θ̂) for some θ̂ that we
estimate using the data y. Further, assume we can only compute the model pdf up to a constant:

p(y|θ) = 1

z(θ)
q(y|θ) .

That is, we know how to compute q(y|θ) but we do not know how to compute

z(θ) =

∫
y∈RD

q(y|θ)dy .

Define the model ‘score function’ as the gradient of the model log-pdf with respect to the data y:

ψ(y,θ) =


∂ log p(y|θ)

∂y1
...

∂ log p(y|θ)
∂yD

 =

ψ1(y,θ)
...

ψD(y,θ)

 = ∇y log p(y|θ) = ∇y log q(y|θ) .

Similarly, define the data score function ψy(·) = ∇y log py(·) as the gradient for the true distribution.
Now define the expected squared distance between scores as

j(θ) =
1

2

∫
y∈RD

py(y)∥ψ(y|θ)−ψy(y)∥2dy .

Then the score matching estimator is defined

θ̂ = argmin
θ
j(θ) . (2)

This estimator does not require knowledge of z(θ), but computation of j(θ) apparently requires non-
parametric estimation of py and its derivative. But wait...
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Theorem 1. Assume that the model score function ψ(y|θ) is differentiable and that weak regularity
conditions hold. Then the objective function j(θ) of (2) may be expressed as

j(θ) ∝
∫
y∈RD

py(y)

D∑
d=1

(
∂dψd(y|θ) +

1

2
ψd(y|θ)2

)
dy

=

∫
y∈RD

py(y)

D∑
d=1

(
∂2 log q(y|θ)

∂y2d
+

1

2

(
∂ log q(y|θ)

∂yd

)2
)
dy ,

Proof. The formula in (2) becomes

j(θ) =

∫
py(y)

(
1

2
∥ψy(y)∥2 +

1

2
∥ψ(y|θ)∥2 −ψy(y)

Tψ(y|θ)
)
dy

∝
∫
py(y)

(
1

2
∥ψ(y|θ)∥2 −ψy(y)

Tψ(y|θ)
)
dy

=

∫
py(y)

1

2
∥ψ(y|θ)∥2dy −

D∑
d=1

∫
py(y)ψd(y)ψd(y|θ)dy

=

∫
py(y)

1

2
∥ψ(y|θ)∥2dy −

D∑
d=1

∫
py(y)

py(y)

∂py(y)

∂yd
ψd(y|θ)dy

=

∫
py(y)

1

2
∥ψ(y|θ)∥2dy −

D∑
d=1

∫
∂py(y)

∂yd
ψd(y|θ)dy

=

∫
py(y)

1

2
∥ψ(y|θ)∥2dy +

D∑
d=1

∫
py(y)

∂ψd(y|θ)
∂yd

dy

=

∫
y∈RD

py(y)

D∑
d=1

(
∂dψd(y|θ) +

1

2
ψd(y|θ)2

)
dy

The penultimate step follows from integration by parts and the assumption that py goes to 0 at ±∞.
Actually, Hyvarinen (2005) proves the more general multivariate integration by parts required.

In practice, one observes y1, . . . ,yN ∼ py(y). The empirical equivalent to (2) is given by

j̃(θ) ∝ 1

N

N∑
n=1

D∑
d=1

(
∂dψd(yn|θ) +

1

2
ψd(yn|θ)2

)
,

and this converges to j(θ) by the law of large numbers.

4.1 Multivariate Gaussian

Consider the multivariate Gaussian model

p(y|µ,Ω) =
1

z(µ,Ω)
exp

(
−1

2
(y − µ)TΩ(y − µ)

)
.

Then

q(y|µ,Ω) = exp

(
−1

2
(y − µ)TΩ(y − µ)

)
,

ψ(y|µ,Ω) = −Ω(y − µ) ,

and

∂dψd(y|µ,Ω) = −ωdd := −[Ω]dd .
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It follows that

j̃(µ,Ω) =
1

N

N∑
n=1

((
D∑
d=1

−ωdd

)
+

1

2
(yn − µ)TΩΩ(yn − µ)

)
.

Solve for µ̂ by setting the following gradient to 0:

∇µj̃(µ,Ω) = ΩΩµ−ΩΩ

(
1

N

N∑
n=1

yn

)
.

Because Ω is positive definite, and so invertible, we obtain the familiar MLE µ̂ = ȳ. Next,

∇Ωj̃(µ,Ω) = −I+Ω

(
1

2N

N∑
n=1

(yn − µ)(yn − µ)T
)

+

(
1

2N

N∑
n=1

(yn − µ)(yn − µ)T
)
Ω .

I recommend using the matrix differential to calculate the above gradient. This is equal to 0 when Ω
is the inverse of the MLE.

4.2 Matrix differential briefly

Suppose we have a function h : Mn×n → R. Then the matrix differential d relates to the gradient by
the following identity:

dh(Ω) = tr ((dΩ)G) ⇐⇒ ∇h(Ω) = G .

Before we calculate the differential, we have

j̃(µ,Ω) =
1

N

N∑
n=1

((
D∑
d=1

−ωdd

)
+

1

2
(yn − µ)TΩΩ(yn − µ)

)

=
1

N

N∑
n=1

(
−tr(Ω) +

1

2
tr
(
(yn − µ)TΩΩ(yn − µ)

))

=
1

N

N∑
n=1

(
+
1

2
tr
(
Ω(yn − µ)(yn − µ)TΩ

))

= −tr(Ω) + tr

(
Ω

(
1

2N

N∑
n=1

(yn − µ)(yn − µ)T
)
Ω

)
.

The rest follows from the linearity of the trace and differential operators followed by the product rule.

4.3 Note on terminology

The term ‘score function’ typically denotes the gradient of the log-likelihood w.r.t. the model parameter.
Here, it is used to refer to the gradient w.r.t. the data. In fact, the two are the same for location family
distributions of the following form:

p(y|µ) = p(∥y − µ∥) ,

where ∥·∥ denotes the L2 norm.
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